

Design report
December 2013

Liesl Malan Landscape Architects

PO Box 78 Harcourt Victoria 3453
p 0354422253 m 0427132601
Table of Contents Page
Introduction. 3
Report purpose
Project background
Why is a new bus shelter proposed?
Why is the bus shelter being updated
Influence from the Vaughan Street Redevelopment 4
Process 5
The Bus Shelter Working Group
Traffic and bus shelter environment
Draft drawings and images 6
The Final Bus Shelter Design 7
Key design outcomes
Final Draft Sketch Design Drawings 8
Final Bus Shelter Design Concept Plans 9
Further work required 10
Appendices 11

Introduction

Report Purpose

This document has been prepared to provide a record of how the bus shelter design has been developedwith theBus Shelter Working Group. Their input guided the direction of the bus shelter design and was a collaborative process.

Project background

LMLA has been working on the concept to redevelop Maude Street since 2010. The project's key outcomes include linking the new Vaughan Street redevelopment (now known as Vaughan Central) with the Maude Street Mall. This aims to create a walk-able inner CBD connecting the major commercial areas with a new bus interchange and the existing railway station.

Why is a new bus interchange proposed?
The design of the new bus interchange is central to the success of the overall Maude Street redevelopment. The existing bus stop area in Maude Street provides for 5 buses at one time. Shepparton Transit (the major public bus provider in Shepparton and surrounds) has advised that this is becoming inadequate for the needs of the Greater Shepparton community. The need for buses to be able to wait in this area is causing congestion and time tabling restrictions. Greater Shepparton City Council (GSCC) has identified the block between Vaughan Street and Ashenden Street as a suitable location for a bus interchange.

Why is the bus shelter being updated?

Shepparton has a standard CBD bus shelter which has serviced the centre of Shepparton for some time. The need for a new design for Shepparton's Maude Street Bus Shelters is an outcome of the following issues:

- The Vaughan Street Redevelopment brief called for a new palette of materials and structure of the new streetscape to influence future works in Shepparton's CBD. The Vaughan Central project has been constructed and completed in November 2013. The design needs to respond and fit in with the new style developed in Vaughan Central.
-Public transport will play a large role in Shepparton's future transport and traffic requirements. The bus stop and shelters need to reflect this reality creating an environment that supports increasing public transport usage. The new design response needs to include the modern systems found in capital cities such as audible / digital timetables which are linked to bus GPS systems to provide up to the minute information to transport users.

Maude Street Bus Shelter
 design report

Influence from the Vaughan Street Redevelopment

In early 2010 LMLA began work on the Vaughan Street Redevelopment (now known as Vaughan Central). LMLA were the key designers on many aspects of the streetscape including the idea of restructuring the streetscape to provide a more welcoming pedestrian experience, the level crossings to address access issues and the detailed design features such as the custom seating and pyc sculptures.

The new design in Vaughan Street was to promote Shepparton as a city in a regional area. The cultural definition that in the country people want to stop and talk in the street' became the key driver behind the streetscape structure and the need to address walk-ability of Shepparton's CBD. This new direction for Shepparton's CBD aims to influence Shepparton's dependance on cars.

Pattern and detail were developed as a way to celebrate Shepparton culture and also provided an alternative to urban minimalism which was generating negative feedback from the public.

Within the bus shelters and the bus interchange, these principles of inclusion, walkability, detail and pattern are continued.

Process
 The Bus Shelter Working Group

From the outset, the design of the bus shelters was to address issues of access and inclusion, including those faced by people with a disability and older people, as well as the general community's needs. For this reason a Bus Shelter Working Group was established with representatives from GSCC including Carl Byrne (Development Officer - Projects Department at GSCC), Darren Buchanan (Team Leader Design Services at GSCC), Louise Dwyer (Access and Inclusion Officer at GSCC) and representatives from the Disability Advisory Committee (DAC) and Positive Ageing Advisory Committee (PAAC). The Working Group met for a series of workshops to develop the bus stops. Their input guided the direction of the bus shelter design and was a collaborative process.

The four workshops with the Bus Shelter Working Group addressed the following:

- The existing Shepparton CBD Standard Bus Shelters were reviewed and discussed.
- A precedent study of bus stops and public transport facilities was collated and discussed with the Working Group.
- A survey regarding bus stop user needs and thoughts on the current bus shelters was developed and distributed through the Working Group. Feedback was received and incorporated into the design.
- Crime Prevention Through Environmental Design (CPTED) principles were applied to each design and formed a major consideration in each revision.
- Louise Dwyer has been involved in providing comprehensive comments on both the streetscape and the bus shelter design at all stages. Her comments on both the shelters' form and the streetscape environment have been valuable in addressing access and inclusion issues on multiple levels.
- The design form of the bus shelters was considered in the streetscape to ensure the shelter responded to site-based issues including response to the Shepparton climate. At each stage, the bus shelter form was refined and developed to meet the needs of the users.

Traffic and the bus shelter environment

Additional expertise from within Council was drawn on to help address the bus shelters in the streetscape. Brendan Walsh (Senior Design and Traffic Engineer at GSCC) has reviewed the turning circles and bus movement systems as well as providing information on Vic Road Bus Stop Standards.

- As part of Brendan Walsh's review, the streetscape has undergone several realignment studies utilising turning circles. Each time the streetscape has been refined to meet the traffic needs of different stakeholders including the CFA, traders and buses. The needs of vehicles have been balanced with the need to promote an excellent pedestrian experience. The bus shelters' design have responded to the changing streetscape to meet standards.
- Public Transport Victoria's website refers to Vic Roads to set the standard for bus shelters and stops. The Vic Roads standard for bus stops and shelters was reviewed and incorporated into the design.

Draft drawings and images

LMLA draft sketch design amended to respond to workshop feedback

Maude Street Bus Shelter
 design report

The Final Bus Shelter Design

As a result of the workshops and discussions with the Bus Shelter Working Group, the follow key design principles were developed:

Legible - easy to read cues, the information provided is clear and linked to the new GSCC wayfinding strategy

Robust - withstand daily wear and tear, as well as destructive behaviour and not provide a target for vandalism.

Welcoming \& comfortable - Pattern and texture, provide a welcoming space which imbues the user with a sense that they can be trusted with a beautiful facility, create a comfortable space which encourages people to use the service.

Ergonomic design principles - the materials and form should respond directly to the human forms of a diverse user group.

Modern and state of the art - utilise modern technology to improve the transport users' experience.

Designed for Shepparton - respond to environmental conditions to ensure good shelter is provided, use Vaughan Central styling, design for local skills and materials.

These key principles are discussed in detail on the Maude Street Bus Shelter Conceptual Plans included in this report.

Key design outcomes

Key features of the design are discussed in detail on the plans included in this report such as:

- Use of colour, super graphics and other cues to distinguish the bus shelters apart.
- A guide for providing timetable and route information as well as regulatory and location signage has been outlined.
- A robust materials palette of concrete, toughened glass and steel, balanced with timber slats on the seat, a plywood ceiling and feature detailing to ensure the space is welcoming and comfortable.
- Sight lines to provide good visual surveillance.
- The form of the bus shelter has been designed around the human form whether in a wheelchair or free standing. Space for luggage and additional items such as prams has been considered.
- An audible timetable has been designed into the structure. Additional digital timetables have been suggested.
-The roof form to responds to the environmental conditions and provides excellent shelter.

 nommation such s s maps route ceiarams and dinetables needsto

 tansport user

$\underset{\substack{\text { Robust } \\ \text { Bus sheltern }}}{ }$

 are and detail crive isure a

Weloming and omfortale

Designed for Shepparton
\qquad

 smaler panes of desest of initrephocement oosts

Double length bus shelter in section - road side view

Further work required

The bus shelter design has progressed to a final concept. The project team has discussed that there are areas best resolved during detailed design and documentation. The following list outlines some items which will need to be resolved:

- Detailed drawings and specifications should be produced. It is intended that shop drawings will be produced by fabricators and approved prior to fabrication and installation of items.
- The conceptual design should be work shopped / reviewed with a Structural Engineer. The design should be revised as a result. Then the Structural Engineer should undertake computations of the documented design.
- The conceptual design should be work shopped / reviewed with fabricators to ensure the design is able to be fabricated efficently, manufactured and maintained using local skills and easily sourced materials. The design should be revised as a result.
- The lighting design of the individual bus shelters and the streetscape will need to be co-ordinated / work shopped with a lighting expert / designer and lighting authorities.
- The detailed design and discussions with fabricators should be used to produce an Opinion of Probable Costs specific to the bus shelter.
- The audible/ digital timetable system to be discussed and negotiated with PTV.
- PTV logos and signage to be co-ordinated with PTV to ensure requirements are met.
- Final review by PTV, DAC, PAAC and relevant Council team members to ensure that the design meets access requirements including fine details such as colour and contrast, display of information and spatial relationship requirements.
- Review with Council works team to ensure the maintenance requirements are within the team's capacity, or acceptable capacity extension.
- It is strongly recommended that a physical model be made of the final bus shelter design at an appropriate scale (eg 1:10).
Much of the feedback on the bus shelter design discussed the need for multiple ways of communicating information to ensure it has been understood. Reading plans is not always a core skill for committee members, however their input is valuable and alternative methods of communication should be considered. A physical model would provide a tangible object to engage with.

Maude Street Bus Shelter

Appendices

- LMLA draft sketch design (1)
- LMLA draft sketch design (2)
- Concept for Maude Street redevelopment - Streetscape plans
- Shepparton CBD standard Bus Stop
- Vic Roads standard

출 Lies Malan Landscape a rochitects and

ion AA
Raised pedestrian crossing - Maude Street Rowe Street

Section CC
Maude Street Bus Interchange

Streetscape Design Rationale
pedestrian link between the Mall Vaugha
pedestrian ink between the Mall, Vaughan
Street and the proposed bus interchange.
At the same time this design provides a
quality retail streetscape experince
quality retail streetscape experience.
New tree planting provides greater shade
for pedestrians, and for parked cars, while
also assisting in cooling the streetscape.
"Public realm spaoes" provide areas for
resting/ socialising without a commercial
imperative. These public realm areas are to be welcoming spaces with understorey planting to contribute to the overall streetscape amenity. They have been strategicilly y placed to provide resting areas
bins.

Note:
Please refer to Bus shelter concept for
details

```
Proposed plaza design is conceptual only. purposes only.
All elements are subject to change during
consultation and design development.
```


DESIGN PHILOSOPHY

The Bus and Taxi Shelter is designed specifically for the Shepparton City. It draws on the theme of metallic furniture with blue colour trim of the Greater Shepparton furniture range. The signage on the end elevation metallic fins uses the Greater Shepparton logo and identifies the shelter as a taxi rank or bus shelter.

The shelter has a laminated glass surround that is housed in a metallic coloured frame, providing shelter whilst maintaining visibility of oncoming buses or taxis. A double shelter can provided for major Bus Stops.

This double Bus shelter has a blue seat matching the blue trim of the roof whilst the standard Single Shelter for Taxi's and Bus's has the standard Bright Silver Satin coloured seat. The shelter roof extends over the frame providing maximum shade from summer sun for pedestrians. A light weight aluminium frame is designed to be attached to the glass walls to provide bus information from both sides of the shelter.

Profile of Front Nose of fin to match front bull-nosed fascia.
Front Elevation bull nosed fascia to be Powdercoated DULUX Blaze Blue Gloss 19941
Zinc plated gutter system to be 100 mm in length from rear of column. To be powdercoated Dulux Blaze Blue gloss 19941. Centre line of logo.
-74° angle to rear of fin. 3 25 mm radius to all corners.

Side Fasci Fin to be laser cut with profile and City of Shepparton logo as shown. Logo to be 58 mm from base of fin, 25 mm from gutter system and 48 mm from top of fin as shown. Fin to be attached to roof structure. Fin to be powdercoated DULUX Bright Silver Satin 51491. Graphic to be sign written as shown on following page. Seat to powdercoated DULUX Blaze Blue Gloss for Double Bus Shelters and DULUX Bright Silver Satin 5149 for Standard Bus and Tazi Shelters.

RHS Frame 2270 min. height. Fabrication as nominated by manufacturer. Frame to be powdercoated DULUX Bright Silver Satin 51491.

SUPPLIER

Bus \& Taxi Shelter Polite Enterprises Pty Ltd.
ph. 0394369922
fax. 0394369944
Aluminium Frame for Bus Information
20 mm Snap \& Grip Foolscap size Clear anodised aluminium frame.
See Urban Design Manual F 820.

DESIGN CONTACT

Urban Initiatives
ph. 0393296844

SHELTER FINISHES

Side Fins

8mm thick Laser Cut ends.
Powdercoat DULUX Bright Silver Stain 51491.
Graphic Sigh to be written using:
Green Colour - DULUX Thai Teal 53 GG 50/360.
Gloss to match powdercoat colours.
Blue Colour - DULUX Blaze Blue Gloss 19941.
Blue Text - DULUX Space Blue Gloss 19990.
Front Bull Nosed Fascia \& Rear Gutter
Blue Colour - DULUX Blaze Blue Gloss 19941.
Bus Shelter Frame
Powdercoat DULUX Bright Silver Stain 51491.
Seat for Double Bus Shelter Blue Colour - DULUX Blaze Blue Gloss 19941.
Seat for Standard Bus \& Taxi Shelter
Silver Colour - DULUX Bright Silver Stain 51491.

RECOMMENDED USE In Shepparton City Centre.
MAINTENANCE
Cleaning and maintenance as required.

DOCUMENTATION

Cross reference with site layout drawings.

RESPONSIBLE COUNCIL

 OFFICERManager - Engineering Projects ph. 0358329700

Provide Directional Tactile ground surface Indicators in Locations as shown. For paving types and detail refer to Urban Design Manual Notes H 040.
Provide Hazard Tactile ground surface Indicators in Locations as shown. For paving types and detail refer to Urban Design Manual Notes H 040.

Typical Layout Plan Not to Scale

DESIGN PHILOSOPHY

The 20mm snap and grip clear anodised aluminium frame used to house bus timetable information has been selected for its ability to be mounted on a glass wall so that bus timetable information can be seen from both the interior and exterior of the shelter. Its form is unobtrusive and its finish has been selected to compliment the bus shelter metallic finish.

The snap and grip unit provides a frame that is fixed in appearance but its sides and tops flip out allowing timetable information to be easily placed by Shepparton Transit. When Council orders bus shelters two frames per shelter should also be ordered and installed when bus shelters are placed in Shepparton City Centre.

SUPPLIER

Polite Enterprises Pty Ltd.
ph. 0394369922
DESIGN CONTACT
Polite Enterprises Pty Ltd.
ph. 0394369922
MATERIALS \& FINISHES 20mm Snap \& Grip Foolscap size Clear anodised aluminium frame. Frame to be mounted to glass as shown in drawing by supplier. Clear acrylic sheet to be glare free.

RECOMMENDED USE In Shepparton City Centre Bus Shelters.

MAINTENANCE
Cleaning and maintenance as required.

DOCUMENTATION
Cross reference with site layout drawings.

RESPONSIBLE COUNCIL OFFICER
Manager - Engineering Projects ph. 0358329700

Bus Timetable Information and Frame Detail
Not to Scale

Timetable Frame Section/ Not to Scale

$$
\begin{aligned}
& \text { Tactile ground surface indicators } \\
& \text { Tactile ground surface indicators (TGSIs) assist } \\
& \text { people with vision impairment to access the bus from } \\
& \text { the adjoining footpath. Tactile directional indicators } \\
& \text { direct people from the footpath to the kerb where the } \\
& \text { bus front door will be, and from the bus back to the } \\
& \text { footpath. Tactile warning indicators warn people of } \\
& \text { the kerb and potential hazard beyond it. The layout } \\
& \text { and specification of TGSIs should generally be in } \\
& \text { accordance with the Australian Standard AS1428 } \\
& \text { Design for Access and Mobility Part 4, Tactile } \\
& \text { Indicators. } \\
& \text { The TGSI layout shown in figure } 1 \text { provides good } \\
& \text { guidance for people who are vision impaired by } \\
& \text { directing them to where the front door of the bus } \\
& \text { will be. It also minimises the impact of the tiles on } \\
& \text { wheelchair users if they are boarding or alighting } \\
& \text { from the front door. This is achieved by locating } \\
& \text { the directional tiles central to the front doors so the } \\
& \text { wheelchair can straddle them. In addition to this, } \\
& \text { it should be noted that most of the tactile warning } \\
& \text { indicators will be covered by the ramp when it is } \\
& \text { deployed from the bus. }
\end{aligned}
$$

Passenger hardstand area A passenger hardstand area with a sealed smooth surface provides a connection between the bus doors
and the nearby footpath, particularly for wheelchair users. It also defines the waiting and circulating space around the bus stop passenger facilities. The extent
of the hardstand area may vary depending upon the of the hardstand area may vary depending upon the
bus stop environment. It should consist of one of the
following:
\square The boarding/alighting clear area adjacent to the door with wheelchair access (suitable if all
buses using the stop deploy ramps from the same door)
\square The boarding/alighting clear areas adjacent to
I The boarding/alighting clear areas plus the
\square The options described above, but with a Additional hardstand area may be required on the
other side of the post if timetable cases face the opposite direction, and can't be spun around.

With more facilities, this stop still provides
required clear areas spaıр ıрวрр paunbaı

vic roads

Boarding and alighting clear areas
To provide unobstructed access to the front and rear
doors of the bus, an area adjacent to the doors should
be free from obstacles such as street furniture, trees,
and poles. This is particularly important for wheelchair
access to the bus, for the efficient loading and unloading
of passengers, and to provide a consistent bus stop
layout.
Figure 1 illustrates the minimum clear areas. These
dimensions are based on:
Provision of manoeuvring space for a wheelchair Provision of manoeuvring space for a wheelchair
adjacent to the doors, as low floor buses may
have ramps at either the front or rear doors have ramps at either the front or rear doors A wider clear area at the rear door to provide easily exit in a number of directions once off the

The rear door location varying with different

Bus stop with shelter and bus service
information totem

Bus stops are an important interface between buses
and passengers. They provide facilities for waiting
passengers and facilities for the bus. Appropriate
traffic management issues also need to be addressed
to allow the bus to enter and leave the stop. This
approach means that bus stops can be divided into
the two distinct components of passenger waiting
area and bus stopping area. The following guidelines
provide information on the design and intended
operation of both passenger waiting and bus stopping
areas for rigid buses up to 14.5 metres in length.
Guidance on bus stops for articulated buses is not
covered in this document.

Passenger waiting area

 The passenger waiting area at bus stops should have a consistent and predictable layout, taking into accountwaiting, boarding and alighting passengers, passing pedestrians, access for people with vision or physical
impairments, and interaction with the bus and bus driver.

All new bus stops must now comply with the requirements of the Disability Discrimination Act
(1992) and the Disability Standards for Accessible Public Transport (2002). The Standards outline the requirements in areas such as access paths, and tactile ground surface indicators (TGSIs). These bus stop guidelines use accessible design pincibild be read in conjunction with the Disabily Standards.

Bus stop post and flag

A bus stop post and flag (i.e. sign) are used to identify the bus stop, and provide a "marker" for the
bus driver to stop with the front of the bus in line with the post. This provides a "control point" for the
layout of bus stop facilities, and allows a consistent layout of bus stop facilities, and allows a consistent and predictable environment to be created. This is
Advertising end panels may not be possible if the be maintained.
Option C is shown downstream of the bus stop post and flag. This location may impact on sight lines is between the boarding and alighting clear area. However with only 3000 mm between the areas, a
smaller shelter would be required.
Timetable information should be provided on the bus stop pole. At high use stops, it is desirable to display the bus passenger shelter. However it should be noted that the current contract (June 2003) between the bus operators and the Government of Victoria requires
the operator to "display a clearly legible timetable in the operator to "display a clearly legible time case for at least 30% of all bus stops".
display
Shelter Option B provides a bus passenger shelter
without seats or end panels and is located against without seats or end panels and is located against
 waiting passengers, but would need to be of minimum width and have tapered ends to minimise its impact on
people with vision impairment.
Shelter Options C and D position a bus passenger shelter with its back to the kerb as shown in figure 4.
The proximity of the shelter to the kerb increases the risk of it being hit by an errant vehicle. Whilst there is a low incidence of this type of crash, it is nevertheless an issue for consideration. Figure 4 is considered to
be appropriate only in low-speed environments or where nearby parking creates a buffer, as shown in
figure 7 .
Visibility between waiting passengers and drivers can be compromised with shelters facing away from
the road. Good sight lines should be maintained with these options, which may be preferred on the basis of providing better weather protection in some
circumstances.

Figure 4: Bus Passenger Shelter Location Options C and D-Roadside width $>2.5 \mathrm{~m}$

The minimum requirements to be maintained are as
follows: follows:

A continuous accessible path of travel of 1200

800 mm width, and if more than this space is occupied (for example by a wheelchair user)
then this additional space could be shared with he continuous accessible path of travel The area to 500 mm from the back of the kerb is to be free of fixed obstacles to allow for overhang
of the bus and its mirrors on entry and exit, and The boarding and alighting clear areas shown in \square figure 1 are to be free from fixed obstacles. Using the above criteria, the following four options have been identified for roadsides narrower
than 3.2 metres. Each option has advantages and than 3.2 metres. Each option has advantages and to determining the most appropriate solution for a particular site.

Shelter Option A is set back behind the footpath as shown in figure 2. This usually requires negotiations with the adjoining landowner. However, this option
provides a solution for roadside widths as narrow as 2.0 metres. An advertising end panel could be
provided on the shelter. Adequate clearances and provided on the shelter. Adequate clearances and
sight lines should be provided around the shelter for maintenance, passenger security and visibility between waiting passengers and bus drivers.

Sites with fences, vegetation or other obstructions adjacent to the proposed set back shelter may not be
suitable for Shelter Option A.

$$
\begin{aligned}
& \text { In a constrained environment the preferred location } \\
& \text { for a bus passenger shelter is as shown in figure } 1 \text {. A } \\
& \text { minimum width } 1200 \mathrm{~mm} \text { is shown on each side of } \\
& \text { the shelter to provide a continuous accessible path } \\
& \text { of travel. If the shelter has an advertising panel that } \\
& \text { is } 1500 \mathrm{~mm} \text { wide, a minimum roadside width of } 3.9 \\
& \text { metres would be required. If there were } 800 \mathrm{~mm} \\
& \text { end panels, the minimum roadside width would be } \\
& \text { reduced to } 3.2 \text { metres. } \\
& \text { When the roadside width is less than } 3.2 \text { metres, it } \\
& \text { can be difficult to locate a bus passenger shelter and } \\
& \text { maintain the appropriate clearances. }
\end{aligned}
$$

Figure 2: Bus Passenger Shelter Location Option A - Roadside width $>2.0 \mathrm{~m}$

Bus bays may, however, be constructed where the
stop:
\square Is used as a timing point, where buses may need $\square \quad$ Is used as a bus driver change-over point,
 \square Is a particularly high loading bus stop, where the minutes.
In places where a bus bay is considered as necessary, it is also important to obtain written agreement from
the operator and to consider means of assisting the the operator and to consider means of assisting the the bas measures such as:
bus exiting the bay through mer
\square Linemarking, pavement markings or static Linemarking, pavement markings or static
roadside signs to advise motorists of the bus bay and the need to give way to exiting buses, and
Assisting bus exit manoeuvre through the use Assisting bus exit manoeuvre through the use
of nearby signals to create a gap in the traffic stream. Guidance on special circumstances can be provided
by VicRoads' Road Based Public Transport section.
Bus stops and road shoulders
Where bus stops are situated on road shoulders, the
width of the shoulder and the nature and condition width of the shoulder and the nature and condition
of the surface should be carefully considered, taking
account of vehicle volumes and sight distance. Sites and treatments should provide safe and
$\begin{array}{ll}\square & \text { passenger access and waiting } \\ \square & \text { buses stopping and re-entering the traffic flow } \\ \square & \text { vehicles to pass or overtake a stopped bus. }\end{array}$ Bus stops may be indented into the adjacent road side

Bus stop bays

 area so that the bus is out of the traffic stream while it is setting down or taking up passengers. Figure 6 shows the layout of a typical bus stop bay. Road Rule 77 requires drivers to give way to buses displayinga "Give Way to Buses" sign, however bus operators experience difficulty exiting from bus bays due to enter the traffic stream.

In places where the bus is stopping in traffic, consideration of markings and signage to increase the
conspicuity of stops is required (refer to figure 5).

Bus stopping area

Defining a bus stopping area A bus stop is designated by a bus stop flag or sign.
Stopping at or near a bus stop is defined in the Road Stopping at or near a bus stop is defined in the Road of a public bus) must not stop at a bus stop, or on the road, within 20 metres before a sign, and within 10
metres after the sign, unless the driver stops at a place on a length of road, or in an area, to which a parking control sign applies and the driver is permitted to stop
at that place under the Road Rules". at that place under the Road Rules".

If the bus stop area is other than 30 metres in length, or additional parking control is needed, parking
control signs and/or Bus Zone signs as shown in Pavement markings as shown in figure 5, may be the pavement markings do not have regulatory significance. Bus zone signs and pavement markings may also be used: $\square \quad$ at bus stops abutting parking areas
$\square \quad$ where problems exist with illegal parking at bus $\square \quad \begin{aligned} & \text { where it is desirable to improve the conspicuity } \\ & \text { of a bus stop for intending passengers, or for }\end{aligned}$ It is not appropriate to use bus zone pavement
markings at indented bus bays.

Bus stop kerbing Where a kerb is provided at a bus stop, it should be Design Drawing SD 2001. This type of kerb provides good guidance for the bus driver, provides some protection to the waiting bus passengers, and meets
the ramp height requirements of the Disability Standards for Accessible Public Transport (2002). If kerb is not provided, consideration must be given to otherwise achieving the minimum required gradient
for ramps deployed from the bus.
Other street furniture Other street furniture such as rubbish bins, seats in lieu of bus passenger shelters, real-time information
signs, and bus service information totems may also signs, and bus service information totems may also
be provided. These should be located such that the boarding and alighting clear areas are maintained,
and the 1200 mm continuous accessible path of travel is provided throughout the bus stop area. All street
furniture should be set back from the kerb by 500 mm to allow for bus overhangs.

Lighting

Lighting at bus stops serves a number of purposes. It provides illumination for accessing the stop, waiting,
boarding, and alighting. It also provides an increased level of perceived safety and security. The minimum
lighting standard is to meet the requirements of lighting standard is to meet the requirements of
the Public Lighting Code AS/NZS 1158-1997. Lighting levels above the Code should be considered at locations where there is a high demand for the
service.

$$
2
$$

VicRoads has adopted a policy to limit the use of bus
stop bays, which considers the views and experiences stop bays, which considers the views and experiences of a road. As a result of the policy, the following
guidelines have been established when considering 0
0
0
0
0
0
0
0
0

$$
\square \quad \begin{aligned}
& \text { Bus bays should not be constructed in } 60 \mathrm{~km} / \mathrm{h} \\
& \text { zones unless there is physically no way another }
\end{aligned}
$$ vehicle could overtake the stopped bus, or

the stop is very close to the departure side of the stop is very close to the departure side of
a signalised intersection in a way that would severely impact intersection operation Bus bays should not be constructed in $70 \mathrm{~km} / \mathrm{h}$
 $\square \quad$ Bus bays should not be constructed in $80 \mathrm{~km} / \mathrm{h}$ zones unless there are only one or two lanes
in the bus direction, or the stop is close to the
departure side of a signalised intersection, and in the bus direction, or the stop is close to the
departure side of a signalised intersection, and
Bus bays may be constructed in $90 \mathrm{~km} / \mathrm{h}$ and 0
0
0
0
0
0
0 In places where the bus is stopping in traffic,

Further reading
AUSTROADS (1994) Guide to Traffic Engineering
Part 11 - Parking, Section 7.2.3 Bus Stops.
COMMONWEALTH OF AUSTRALIA (2002)
Disability Standards for Accessible Public Transport. DEPARTMENT OF INFRASTRUCTURE (2005)
Requirements for Bus Stop Compliance.
VICROADS (1999) Traffic Engineering Manual Volume 1, Section 9.3.4 Bus Zones and Minibus
Zones.
VICROADS (2001) Traffic Engineering Manual Volume 2, Section 18.5.1 Pavement Markings at On-
Road Bus Stops. ViCROADS (20

VICROADS (2002) Road Design Guidelines, Section 3.9 Clear Zones.

PUBLIC LIGHTING CODE AS/NZS 1158-1997

Raised pedestrian crossing- Maude Street Rowe Street

Section CC
Maude Street Bus Interchange

Streetscape Design Rationale
The streetscape design provides a stronger pedestrian ink between the Mall, Vaugha At the same time this design provides quality retail streetscape experienoe. New tree planting provides greater shade
for pedestrians, and for parked cars, while also assisting in cooling the streetscape "Public realm spaces" provide areas for resting/ socialising without a commercial
imperative. These public realm areas are to be welooming spaces with understore planting to contribute to the overall streetscape amenity. They have been areas with shade, seating, lighting and
bins.

Note:
lease refer to Bus shelter concept for
details

Proposed plaza design is conceptual only.
This design has been shown for discussi purposes only.
purposese only.
All lements are subject to change during
consultation and desigm development.

